Neuropeptide Signaling Regulates Pheromone-Mediated Gene Expression of a Chemoreceptor Gene in C. elegans
Jisoo Park1, Woochan Choi1, Abdul Rouf Dar2, Rebecca A. Butcher2, and Kyuhyung Kim1,*
1Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea, 2Department of Chemistry, University of Florida, Gainesville, FL32611, USA
*Correspondence: khkim@dgist.ac.kr
Received September 18, 2018; Revised October 16, 2018; Accepted October 17, 2018.; Published online November 14, 2018.
© Korean Society for Molecular and Cellular Biology. All rights reserved.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit (http://creativecommons.org/licenses/by-nc-sa/3.0/).
ABSTRACT
Animals need to be able to alter their developmental and behavioral programs in response to changing environmental conditions. This developmental and behavioral plasticity is mainly mediated by changes in gene expression. The knowledge of the mechanisms by which environmental signals are transduced and integrated to modulate changes in sensory gene expression is limited. Exposure to ascaroside pheromone has been reported to alter the expression of a subset of putative G protein-coupled chemosensory receptor genes in the ASI chemosensory neurons of C. elegans (Kim et al., 2009; Nolan et al., 2002; Peckol et al., 1999). Here we show that ascaroside pheromone reversibly represses expression of the str-3 chemoreceptor gene in the ASI neurons. Repression of str-3 expression can be initiated only at the L1 stage, but expression is restored upon removal of ascarosides at any developmental stage. Pheromone receptors including SRBC-64/66 and SRG-36/37 are required for str-3 repression. Moreover, pheromone-mediated str-3 repression is mediated by FLP-18 neuropeptide signaling via the NPR-1 neuropeptide receptor. These results suggest that environmental signals regulate chemosensory gene expression together with internal neuropeptide signals which, in turn, modulate behavior.
Keywords:
chemoreceptor, gene expression, neuropeptide signaling, pheromone, plasticity


Current Issue

30 November 2018 Volume 41,
Number 11, pp. 933~992

This Article


Cited By Articles
  • CrossRef (0)

Social Network Service
Services

Indexed in

  • Science Central
  • CrossMark